SM2 4.4: Graphing Circles

Identify the center and radius of each. Then sketch the graph. 2) $(x-2)^2 + (y-1)^2 = 4$

1) $(x-2)^2 + (y+4)^2 = 1$

3)
$$(x-4)^2 + (y+4)^2 = 9$$

Center: Radius:

4)
$$(x+2)^2 + (y-1)^2 = 25$$

Center: Radius:

5)
$$(x+4)^2 + (y-3)^2 = 4$$

Center: Radius:

7)
$$(x+1)^2 + y^2 = 9$$

Identify the center and radius of each.

9) $(x-15)^2 + (y+1)^2 = 49$

6) $(x-1)^2 + (y+2)^2 = 4$

8)
$$(x-2)^2 + (y-1)^2 = 11$$

Center: Radius:

10) $x^2 + (y - 14)^2 = 81$

Center: Radius: Center: Radius: Use the information provided to write the equation of each circle.

 11) Center: (6,4)
 12) Center: (−15, −11)

 Radius: 2
 Radius: √15

- 13) A particular cell phone tower is designed to service a 12-mile radius. The tower is located at (-3, 5) on a coordinate plane whose units represent miles.
 - a) What is the standard equation of the outer boundary of the region serviced by the tower?
 - b) Is a cell phone user at (8,0) within the service range? Explain.

- 14) A pizza restaurant will deliver up to 5 miles. The restaurant is located at the origin on a coordinate plane whose units represent miles.
 - a) What is the standard equation of the outer boundary of the delivery region?
 - b) Customers are located at A(4, 3), B(5, 0), and $C(2, \sqrt{21})$. Which of these customers, if any, are on the outer boundary of the delivery region? Explain.